Hexadecimal System In Computer
What Is the Hexadecimal System (Base-16)?
Computers speak binary (base-2), but long strings of 0/1 are hard for humans to read. Hexadecimal (base-16) gives a compact, human-friendly way to view the same bits: every 4 binary bits (a nibble) map to one hex digit. One byte (8 bits) maps neatly to 2 hex digits — perfect for memory dumps, colors, Unicode, and machine code.
🔹 1️⃣ Decimal vs Binary vs Hexadecimal
- Decimal (base-10): digits 0–9
- Binary (base-2): digits 0–1
- Hexadecimal (base-16): digits 0–9 + A, B, C, D, E, F (A=10 … F=15)
Key 4-bit mapping:
🔹 2️⃣ Why Hexadecimal?
- Humans struggle with long binary strings (e.g., “I Love You!” in ASCII bits).
- Hex compresses binary:
11010100→ D41111 1111 1111 1111 1111→ FFFFFF (grouped by 4 bits)
- Each byte = 2 hex digits → clean, readable dumps and color codes.
🔹 3️⃣ Hex Prefixes in Real Tech
🔹 4️⃣ How Hexadecimal - Base-16 Works?
- Base-2 Binary doubles: 1, 2, 4, 8, 16, 32, 64, 128 …
- Base-16 Hexa powers:
Hex digits multiply these powers by 0–15.
🔹 5️⃣ Convert Decimal → Hex (division by 16 with remainders)
✅ Example 1: 469 → Hex
- 469 ÷ 16 = 29, remainder 5 → least-significant hex = 5
- 29 ÷ 16 = 1, remainder 13 → D
- 1 ÷ 16 = 0, remainder 1 → 1
Read remainders bottom→top: 1D5.
✅ Example 2: 1513 → Hex
- 1513 ÷ 16 = 94, rem 9
- 94 ÷ 16 = 5, rem 14 → E
- 5 ÷ 16 = 0, rem 5
Result: Read remainders bottom→top: 5E9.
✅ Example 3: 479 → Hex
- 479 ÷ 16 = 29, rem 15 → F
- 29 ÷ 16 = 1, rem 13 → D
- 1 ÷ 16 = 0, rem 1
Result: Read remainders bottom→top: 1DF.
🔹 6️⃣ Convert Hex → Decimal (expand with powers of 16)
✅ Example: 1D5₁₆ → ?
✅ Example: 5E9₁₆ → ?
✅ Example: 1DF₁₆ → ?
🔹 7️⃣ Convert Hex ↔ Binary (fastest method)
- Hex → Binary: replace each hex digit by its 4-bit binary:
D4→D=1101,4=0100→1101 0100.
- Binary → Hex: group bits in 4s from the right and map each group to one hex digit.
✅ Example: 1D5₁₆ → Binary?
🔹 8️⃣ Convert Binary ↔ Hex (fastest method)
🔗 Interconnection
🔹 4 bits ↔ 1 hex digit → compact human view of binary.
🔹 1 byte ↔ 2 hex digits → easy memory/ASCII/color dumps.
🔹 Powers of 16 (1,16,256,4096…) → drive decimal↔hex math.
🔹 Prefixes (#, 0x, &#, U+) → tell tools to interpret as hex.
By mastering hex, you read/write low-level data confidently — firmware, encodings, colors, addresses — without drowning in 0/1. 🚀
05 Programming Foundations - Hexa.pdf






















0 comments