Hexadecimal System In Computer

What Is the Hexadecimal System (Base-16)?


Computers speak binary (base-2), but long strings of 0/1 are hard for humans to read. Hexadecimal (base-16) gives a compact, human-friendly way to view the same bits: every 4 binary bits (a nibble) map to one hex digit. One byte (8 bits) maps neatly to 2 hex digits — perfect for memory dumps, colors, Unicode, and machine code.


🔹 1️⃣ Decimal vs Binary vs Hexadecimal


  • Decimal (base-10): digits 0–9
  • Binary (base-2): digits 0–1
  • Hexadecimal (base-16): digits 0–9 + A, B, C, D, E, F (A=10 … F=15) 


Key 4-bit mapping:

🔹 2️⃣ Why Hexadecimal?



  • Humans struggle with long binary strings (e.g., “I Love You!” in ASCII bits).
  • Hex compresses binary:
    • 11010100D4
    • 1111 1111 1111 1111 1111FFFFFF (grouped by 4 bits)
  • Each byte = 2 hex digits → clean, readable dumps and color codes. 



🔹 3️⃣ Hex Prefixes in Real Tech






🔹 4️⃣ How Hexadecimal - Base-16 Works?

  • Base-2 Binary doubles: 1, 2, 4, 8, 16, 32, 64, 128 …

  • Base-16 Hexa powers:
    Hex digits multiply these powers by 0–15. 


🔹 5️⃣ Convert Decimal → Hex (division by 16 with remainders)



✅ Example 1: 469 → Hex


  • 469 ÷ 16 = 29, remainder 5 → least-significant hex = 5
  • 29 ÷ 16 = 1, remainder 13D
  • 1 ÷ 16 = 0, remainder 11

Read remainders bottom→top: 1D5.


✅ Example 2: 1513 → Hex



  • 1513 ÷ 16 = 94, rem 9
  • 94 ÷ 16 = 5, rem 14E
  • 5 ÷ 16 = 0, rem 5

Result: Read remainders bottom→top: 5E9.


✅ Example 3: 479 → Hex


  • 479 ÷ 16 = 29, rem 15F
  • 29 ÷ 16 = 1, rem 13D
  • 1 ÷ 16 = 0, rem 1

Result: Read remainders bottom→top: 1DF.


🔹 6️⃣ Convert Hex → Decimal (expand with powers of 16)


✅ Example: 1D5₁₆ → ?


✅ Example: 5E9₁₆ → ?



✅ Example: 1DF₁₆ → ?




🔹 7️⃣ Convert Hex ↔ Binary (fastest method)

  • Hex → Binary: replace each hex digit by its 4-bit binary:
    • D4D=1101, 4=01001101 0100.
  • Binary → Hex: group bits in 4s from the right and map each group to one hex digit.


✅ Example: 1D5₁₆ → Binary?





🔹 8️⃣ Convert Binary ↔ Hex (fastest method)



🔗 Interconnection

🔹 4 bits ↔ 1 hex digit → compact human view of binary.

🔹 1 byte ↔ 2 hex digits → easy memory/ASCII/color dumps.

🔹 Powers of 16 (1,16,256,4096…) → drive decimal↔hex math.

🔹 Prefixes (#, 0x, &#, U+) → tell tools to interpret as hex.

By mastering hex, you read/write low-level data confidently — firmware, encodings, colors, addresses — without drowning in 0/1. 🚀 


05 Programming Foundations - Hexa.pdf
Complete and Continue  
Discussion

0 comments